home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDOOOORRRRMMMMQQQQLLLL((((3333SSSS)))) DDDDOOOORRRRMMMMQQQQLLLL((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DORMQL - overwrite the general real M-by-N matrix C with SIDE = 'L' SIDE
- = 'R' TRANS = 'N'
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
- LWORK, INFO )
-
- CHARACTER SIDE, TRANS
-
- INTEGER INFO, K, LDA, LDC, LWORK, M, N
-
- DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( *
- )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DORMQL overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE =
- 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T
-
- where Q is a real orthogonal matrix defined as the product of k
- elementary reflectors
-
- Q = H(k) . . . H(2) H(1)
-
- as returned by DGEQLF. Q is of order M if SIDE = 'L' and of order N if
- SIDE = 'R'.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- SIDE (input) CHARACTER*1
- = 'L': apply Q or Q**T from the Left;
- = 'R': apply Q or Q**T from the Right.
-
- TRANS (input) CHARACTER*1
- = 'N': No transpose, apply Q;
- = 'T': Transpose, apply Q**T.
-
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDOOOORRRRMMMMQQQQLLLL((((3333SSSS)))) DDDDOOOORRRRMMMMQQQQLLLL((((3333SSSS))))
-
-
-
- M (input) INTEGER
- The number of rows of the matrix C. M >= 0.
-
- N (input) INTEGER
- The number of columns of the matrix C. N >= 0.
-
- K (input) INTEGER
- The number of elementary reflectors whose product defines the
- matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
- 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,K)
- The i-th column must contain the vector which defines the
- elementary reflector H(i), for i = 1,2,...,k, as returned by
- DGEQLF in the last k columns of its array argument A. A is
- modified by the routine but restored on exit.
-
- LDA (input) INTEGER
- The leading dimension of the array A. If SIDE = 'L', LDA >=
- max(1,M); if SIDE = 'R', LDA >= max(1,N).
-
- TAU (input) DOUBLE PRECISION array, dimension (K)
- TAU(i) must contain the scalar factor of the elementary reflector
- H(i), as returned by DGEQLF.
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C
- or Q**T*C or C*Q**T or C*Q.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M).
-
- WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
- On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
-
- LWORK (input) INTEGER
- The dimension of the array WORK. If SIDE = 'L', LWORK >=
- max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum
- performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if
- SIDE = 'R', where NB is the optimal blocksize.
-
- If LWORK = -1, then a workspace query is assumed; the routine
- only calculates the optimal size of the WORK array, returns this
- value as the first entry of the WORK array, and no error message
- related to LWORK is issued by XERBLA.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDOOOORRRRMMMMQQQQLLLL((((3333SSSS)))) DDDDOOOORRRRMMMMQQQQLLLL((((3333SSSS))))
-
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-